Lect. 3: MOSFET

Electronic Circuits 2 (07/1)
W.-Y. Choi

Lect. 3: MOSFET

(b)

Lect. 3: MOSFET

Electronic Circuits 2 (07/』)

Lect. 3: MOSFET

Deviation from the ideal model

$$
\text { 1) } I_{D}=0 \text { in Cut-Off? }
$$

Leakage through the oxide: more significant for thinner oxide (smaller MOSFET)
\rightarrow Significant problem in modern digital circuits

Lect. 3: MOSFET

2) In saturation, $i_{D}=\frac{1}{2} k^{\prime} \frac{W}{L}\left(v_{G S}-V_{t}\right)^{2}$

$v_{D S}$ increase causes reduction in actual channel length.
\rightarrow Channel length modulation.

$$
i_{D}=\frac{1}{2} k \cdot \frac{W}{L}\left(1+\lambda \cdot v_{D S}\right)\left(v_{G S}-V_{t}\right)^{2}
$$

But I_{D} increases with $v_{D S}$ even in saturation

Lect. 3: MOSFET

3) Body effect: Voltage applied to B causes a change in threshold voltage

$$
\begin{aligned}
& \mathbf{V}_{t}=\mathbf{V}_{t o}+\gamma\left[\sqrt{2 \phi_{f}+\mathbf{V}_{S B}}-\sqrt{2 \phi_{f}}\right] \\
& \mathbf{V}_{t}=\mathbf{V}_{t o} \text { when } \mathbf{V}_{S B}=\mathbf{0} \\
& \phi_{f} \text { and } \gamma \text { process-dependent parameters }
\end{aligned}
$$

${ }^{(B)}$ If S and B can be tied, no body effect.
(b)

In IC, B is connected to

- the most negative supply voltage (NMOS)
- the most positive supply voltage (PMOS)
$\rightarrow \mathrm{V}_{\mathrm{t}}$ depends on V_{S}

Lect. 3: MOSFET

Body effect: Voltage applied to B causes a change in threshold voltage.

Electronic Circuits 2 (07/1)
(2) W.-Y. Choi

Lect. 3: MOSFET

4) Temperature effect: Many MOSFET parameters are temperature dependent

Higher temperature causes reduction in I_{D}

Lect. 3: MOSFET

- Modern transistors are very complicated in their structure.
- Many parameters are needed to model their characteristics accurately in SPICE
- SPICE parameters for $0.25 \mu \mathrm{~m}$ NMOS are shown
- For detailed explanations, See MOSFET Users'Manual at www-device.eecs.berkeley.edu/ ~bsim3/get.htm/
\rightarrow Although complicated, they can precisely model the transistor characteristics and accurate circuit design is possible

```
MODEL orbit2L2N NMOS( LEVEL =7
+TNOM = 27 TOX = 5.6E-9
+XJ =1E-7 NCH =2.3549E17 VTH0 =0.3654765
+K1 =0.4732214 K2 = 7.994532E-4 K3 = 1E-3
+K3B =3.0713494 WO =1E-7 NLX =1.617898E-7
+DVTOW =0 DVT1W =0 DVT2W =0
+DVT0 = 0.455178 DVT1 =0.6258687 DVT2 =-0.5
+UO =280.4589023 UA =-1.607126E-9 UB =2.806549E-18
+UC = 3.290051E-11 VSAT =1.07496E5 AO =1.8770435
+AGS =0.3310181 B0 =-3.173524E-8 B1 =-1E-7
+KETA =-8.69841E-3 A1 =8.317145E-5 A2 =0.6592347
+RDSW =200 PRWG =0.4477477 PRWB =0.0208175
+WR =1 WINT =0 LINT =1.392558E-10
+DWG =-2.28419E-8
+DWB =-6.95781E-10 VOFF =-0.0910963 NFACTOR = 1.202941
+CIT =0 CDSC =2.4E-4 CDSCD =0
+CDSCB =0 ETAO =5.0732E-3 ETAB = 6.262008E-5
+DSUB =0.0310034 PCLM = 1.5101091 PDIBLC1 = 0.897659
+PDIBLC2 = 2.924029E-3 PDIBLCB =0.0651312 DROUT =1
+PSCBE1 = 7.017738E8 PSCBE2 =2.271109E-4 PVAG = 8.531511E-3
+DELTA =0.01 RSH = 4.6 MOBMOD =1
+PRT =0 UTE =-1.5 KT1 =-0.11
+KT1L =0 KT2 =0.022 UA1 =4.31E-9
+UB1 =-7.61E-18 UC1 =-5.6E-11 AT =3.3E4
+WL =0 
+LLN =1 LW = 0 LWN =1
+LWL = O CAPMOD = 2 XPART = 0.5
+CGDO =4.59E-10 CGSO =4.59E-10 CGBO =5E-10
+CJ =1.78338E-3 PB =0.99 MJ =0.4661295
+CJSW =4.154041E-10 PBSW =0.9563049 MJSW =0.3162462
+CF =0 PVTHO = -9.648921E-3 PRDSW =-10
+PK2 =3.534961E-3 WKETA =0.0120981 LKETA =-3.31688E-3 )
```

Electronic Circuits 2 (07/1)

Lect. 3: MOSFET

Linearization of MOSFET: $\boldsymbol{\rightarrow}$ Small-signal circuit

Lect. 3: MOSFET

Small signal model for NMOS

$$
\begin{aligned}
& v_{G S}=V_{G S}+v_{g s}, v_{D S}=V_{D S}+v_{d s} \\
& i_{G}=I_{G}+i_{g}, i_{D}=l_{D}+i_{d}
\end{aligned}
$$

$\rightarrow \mathrm{i}_{\mathrm{g}}, \mathrm{i}_{\mathrm{d}}$ as functions of $\mathrm{v}_{\mathrm{gs}}, \mathrm{d}_{\mathrm{vs}}$

$$
i_{g}=0
$$

From $i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{T}\right)^{2}$ with $v_{G S}=V_{G S}+v_{g s}$

$$
\begin{align*}
& i_{D} \simeq\left[\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}\right)\right]^{2}+\left.\frac{d i_{D}}{d v_{G S}}\right|_{V_{G S}} \cdot v_{g S} \\
& \therefore i_{d}=\mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}\right) \cdot v_{g S}=g_{m} \cdot v_{g S} \tag{a}
\end{align*}
$$

Lect. 3: MOSFET

Various expressions for g_{m}

$$
\begin{aligned}
& \mathrm{G} \circ-\mathrm{O} \\
& \text { (a) } \\
& \text { From } i_{D}=\frac{1}{2} \mu_{n} C_{o x} \frac{W}{L}\left(v_{G S}-V_{T}\right)^{2} \\
& g_{m}=\left.\frac{d i_{D}}{d v_{G S}}\right|_{V_{G S}}=\mu_{n} C_{o x} \frac{W}{L}\left(V_{G S}-V_{T}\right) \\
& =\frac{2 I_{D}}{V_{G S}-V_{T}} \\
& =\sqrt{2 \mu_{n} C_{o x} \cdot \frac{W}{L} \cdot I_{D}}
\end{aligned}
$$

Lect. 3: MOSFET

Small-signal model including channel-length modulation

(b)

$$
i_{d}=g_{m} \cdot v_{g s}+\frac{v_{d s}}{r_{0}}
$$

$$
\begin{aligned}
i_{D} & =\frac{1}{2} k^{\prime} \frac{W}{L}\left(1+\lambda \cdot v_{D S}\right)\left(v_{G S}-V_{t}\right)^{2} \\
\Delta i_{D} & =\frac{\partial i_{D}}{\partial v_{G S}} \cdot \Delta v_{G S}+\frac{\partial i_{D}}{\partial v_{D S}} \cdot \Delta v_{D S} \\
\frac{\partial i_{D}}{\partial v_{G S}} & =g_{m}
\end{aligned}
$$

$$
\frac{\partial i_{D}}{\partial v_{D S}}=\frac{1}{2} k^{\prime} \frac{W}{L} \lambda\left(v_{G S}-V_{t}\right)^{2}=\frac{1}{r_{0}} \quad \text { Often, } r_{0}=\frac{V_{A}}{I_{D}}
$$

Lect. 3: MOSFET

Small-signal model including Body effect

(a)

$$
\left.\boldsymbol{g}_{\boldsymbol{m b}} \equiv \frac{\partial \mathbf{i}_{\boldsymbol{D}}}{\partial v_{B S}}\right|_{\substack{v_{G S}=\text { constant } \\ v_{D S}=\text { constant }}}
$$

$$
g_{m b} \equiv \chi g_{m} \quad(\chi: 0.1-0.3)
$$

